
Step-by-step solution:
The given expression is:
7+\log_{3}{4x}=9
Collect the like term:
\log_{3}{4x}=9-7
After subtraction we get,
\log_{3}{4x}=2
We know that:
\log_{a}{b}=c \implies {b}=a^c
similarly,
\log_{3}{4x}=2\implies {4x}=3^2
After solving we get:
4x=9\implies {x=\frac{9}{4}}
The required value of x is:
x=\frac{9}{4}
You may be like this post: