Step-by-step solution-:

Apply the **Cosine** ratio formula:

\cos{(\textcolor{secondary}{A})}=\frac{\textcolor{primary}{b}}{\textcolor{tertiary}{c}}

Substitute the **b=2, angle A=30 degree** and **c=x** into the **Cosine**:

\cos{(\textcolor{secondary}{30^{\circ}})}=\frac{\textcolor{primary}{2}}{\textcolor{tertiary}{x}}

after cross multiply

\cos{(\textcolor{secondary}{30^{\circ}})}\times x=2

\cos{(\textcolor{secondary}{30^{\circ}})}\times x=2~~~~ (\cos{30}^{\circ}=\frac{\sqrt{3}}{2})

After substitution:

\frac{\sqrt{3}}{2}\times x=2

Therefore, The value of x is:

x=\frac{4\sqrt{3}}{3}

You may be like this post: