
Step-by-step solution-:
Apply the Cosine ratio formula:

\cos{(\textcolor{secondary}{A})}=\frac{\textcolor{primary}{b}}{\textcolor{tertiary}{c}}
Substitute the b=2, angle A=30 degree and c=x into the Cosine:
\cos{(\textcolor{secondary}{30^{\circ}})}=\frac{\textcolor{primary}{2}}{\textcolor{tertiary}{x}}
after cross multiply
\cos{(\textcolor{secondary}{30^{\circ}})}\times x=2
\cos{(\textcolor{secondary}{30^{\circ}})}\times x=2~~~~ (\cos{30}^{\circ}=\frac{\sqrt{3}}{2})
After substitution:
\frac{\sqrt{3}}{2}\times x=2
Therefore, The value of x is:
x=\frac{4\sqrt{3}}{3}
You may be like this post: