\int_{-\pi}^{\pi}\frac{sin2x}{sinx}dx=?

step by step solution:
Recall the Double-Angle Identity:
For an angle x , the double-angle identity for sine is:
sin2x=2sinxcosx
Using this formula we can write
\int_{-\pi}^{\pi} \frac{\textcolor{primary}{2\sin{x}\cdot \cos{x}}}{\sin{x}}~dx
By simplifying the above integral we get
\int_{-\pi}^{\pi} (\textcolor{primary}{2\cos{x)}}~dx \implies0
The required value of the given integral is:
\int_{-\pi}^{\pi} \frac{\sin2x}{\sin{x}}=0
You may like:
2. The base of a triangle is decreasing at a rate of 13 millimeters per minute.